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CRITERIA OF PÓLYA TYPE
FOR RADIAL POSITIVE DEFINITE FUNCTIONS

TILMANN GNEITING

(Communicated by Christopher D. Sogge)

Abstract. This article presents sufficient conditions for the positive definite-
ness of radial functions f(x) = ϕ(‖x‖), x ∈ Rn, in terms of the derivatives of
ϕ. The criterion extends and unifies the previous analogues of Pólya’s theorem
and applies to arbitrarily smooth functions. In particular, it provides upper
bounds on the Kuttner-Golubov function kn(λ) which gives the minimal value
of κ such that the truncated power function (1 − ‖x‖λ)κ+, x ∈ Rn, is positive

definite. Analogous problems and criteria of Pólya type for ‖ · ‖α-dependent
functions, α > 0, are also considered.

1. Introduction

The real-valued function f defined on the n-dimensional Euclidean space Rn is
positive definite if the matrix (

f(xi − xj)
)k
i,j=1

is nonnegative definite for all finite systems x1, . . . , xk of points in Rn. It is radial
or isotropic if f(x) = ϕ(‖x‖), x ∈ Rn, for some function ϕ : [0,∞) → R and
‖ · ‖ the Euclidean norm on Rn. Radial positive definite functions have significant
applications in probability theory, statistics, and approximation theory, where they
occur as the characteristic functions or Fourier transforms of spherically symmetric
probability measures, as the covariance functions of stationary and isotropic random
fields, and as the radial basis functions in scattered data interpolation.

Let Φn, n = 1, 2, . . . , denote the class of the continuous functions ϕ : [0,∞)→ R
which are such that ϕ(0) = 1 and the radial function f(x) = ϕ(‖x‖), x ∈ Rn,
is positive definite. Thus, we may identify Φn with the class of the characteristic
functions of n-variate, spherically symmetric probability distributions, or with the
class of the continuous correlation functions of stationary and isotropic random
fields on Rn. In a classical paper, Schoenberg [27] showed that ϕ is an element of
the class Φn if and only if it is of the form

ϕ(t) = Γ(n/2)
∫

[0,∞)

(
2
rt

)(n−2)/2

J(n−2)/2(rt) dF (r) (t ≥ 0)(1)
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2310 TILMANN GNEITING

for F a probability measure on [0,∞) and J(n−2)/2 a Bessel function of order
(n − 2)/2. If the radial function associated with ϕ is integrable over Rn, then
ϕ admits the representation (1) if and only if the Bessel integral

ϕ̂(s) =
(πs

2

)1/2 ∫ ∞
0

ϕ(t) tn/2J(n−2)/2(ts) dt(2)

is nonnegative for s > 0 (see Bochner and Chandrasekharan [4], Section II.7). Yet
very often it is impossible to check directly whether ϕ̂(s) is nonnegative. Thus,
simple sufficient conditions for the positive definiteness of radial functions have
been sought. The prototype for a result of this kind is the celebrated criterion of
Pólya ([24], see also Sasvári [26]): if ϕ : [0,∞) → R is a continuous and convex
function with ϕ(0) = 1 and limt→∞ ϕ(t) = 0, then ϕ belongs to the class Φ1.
Pólya’s criterion is beautiful and has been widely applied. Nevertheless, it applies
only in the univariate case and only to functions f(x) = ϕ(|x|), x ∈ R, which are
not differentiable at zero. The key result of this paper is the following criterion. It
comprises all dimensions and applies to arbitrarily smooth radial functions.

Theorem 1.1. Let ϕ : [0,∞) → R be a continuous function with ϕ(0) = 1 and
limt→∞ ϕ(t) = 0. Suppose that k and l are nonnegative integers, at least one of
which is strictly positive. Put

η1(t) =
(
− d

du

)k
ϕ(
√
u)

∣∣∣∣∣
u=t2

.(3)

If there exists an α ≥ 1/2 so that

η2(t) =
(
− d

dt

)k+l−1

[−η′1(tα)](4)

is convex for t > 0, then ϕ is an element of the class Φn, for n = 1, . . . , 2l+ 1.

The theorem extends and unifies the previous analogues of Pólya’s criterion for
radial functions. Specifically, the following cases have been known.

k = 0, l ≥ 1, α = 1: This beautiful and widely known result of Askey [1] (see
also Letac and Rahman [15] and Trigub [29]) covers all dimensions.

k = 0, l ≥ 1, α = 1/2 : This criterion is stronger than the corresponding result
for α = 1, but still applies to convex functions ϕ only. It was established by Mittal
[22] and Gneiting [7] in seemingly different albeit equivalent forms.

k = 1, l = 0, α = 1/2 : This univariate result of Gneiting [9] is the only pre-
viously known analogue of Pólya’s theorem that applies to functions which are
differentiable at zero.

Note that Theorem 1.1 puts a condition on a derivative of order 2k + l. In
particular, it assumes that ϕ(2k+l)(t) exists for t > 0. This type of result is the best
we can possibly hope for. We will see later on that the criterion applies to radial
functions f(x) = ϕ(‖x‖) in R2l+1 which are differentiable of order 2k at the origin.
Gneiting [6] shows that if f is positive definite, then ϕ(2k+l)(t) exists for t > 0.
The convexity condition on η2 can be checked very efficiently, by taking derivatives
two more times and checking for nonnegativity. Using computer algebra systems,
this lends itself to simple and powerful tests for positive definiteness. Finally, the
criterion can also be used to check whether a radial function has a unimodal Fourier
transform (compare Askey [2] and Section 4 of Gneiting [5]).
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The remainder of the article is organized as follows. Section 2 supplies further
comments as well as the proof of the criterion. The idea for the proof is straight-
forward and based on the well-known fact that scale mixtures of positive definite
functions are positive definite. In Section 3, we apply the criterion to Kuttner’s [14]
and Golubov’s [10] question whether the truncated power function ϕ(t) = (1− tλ)κ+
is an element of Φn. Section 4 concludes the paper and concerns the analogous
problem in the more general case of positive definite functions f(x) = ϕ(‖x‖α),
x ∈ Rn, which depend on an lα-(quasi)norm

‖x‖α = (|x1|α + · · ·+ |xn|α)1/α
, x = (x1, . . . , xn)′ ∈ Rn.

In particular, our results lead to further analogues of Pólya’s criterion for ‖ · ‖α-
dependent functions, α > 0.

2. Proof of the criterion

The idea for the proof of Theorem 1.1 is straightforward. Proposition 2.1 shows
that if α = 1/2, then the theorem gives necessary and sufficient conditions on
ϕ to admit a scale mixture representation in terms of a certain basis function
ϕk+l,l ∈ Φ2l+1. Specifically, we construct ϕk+l,l as a compactly supported cut-off
polynomial. For l ≥ 1, define ϕl,l ∈ Φ2l+1 to be the Euclid’s hat function,

ϕl,l(t) = cl

∫ 1

t

(
1− v2

)l
+
dv,(5)

which is proportional to the radial part of the self-convolution of an indicator func-
tion supported on the unit ball in R2l+1 (see [7], Section 2). Here, u+ is u or 0
according to whether u > 0 or u ≤ 0, and cl is a constant such that ϕl,l(0) = 1. To
introduce ϕk+l,l for k ≥ 1 and l ≥ 0, consider the operator

Iϕ(t) =
∫ ∞
t

uϕ(u) du
/∫ ∞

0

uϕ(u) du (t ≥ 0)(6)

and define

ϕk+l,l = Ikϕk+l,k+l(7)

by a k-fold application of the operator to the Euclid’s hat function ϕk+l,k+l. From
the results of Matheron ([18], Chapter I) and Wu [33], ϕk+l,l is an element of Φ2l+1.
Furthermore, ϕk+l,l(t) is a polynomial of degree 2(k+ l) + 1 for t ≤ 1 and vanishes
for t ≥ 1, and the associated radial function is 2k times differentiable at the origin.
The construction is a special case of Matheron’s claviers sphériques ([18], Section
II.5), and our notation follows the more explicit presentation of Wu [33]. Theorem
4.9 of Wendland [30] establishes the equivalence of Matheron’s and Wu’s seemingly
different approaches.

Proposition 2.1. If α = 1/2, Theorem 1.1 gives necessary and sufficient condi-
tions for a function ϕ : [0,∞)→ R to be of the form

ϕ(t) =
∫

(0,∞)

ϕk+l,l(rt) dF (r) (t ≥ 0),(8)

where ϕk+l,l ∈ Φ2l+1 is Wu’s function (7), and F is a probability measure on (0,∞).
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Proof. Suppose first that ϕ is of the form (8). Then clearly ϕ is continuous with
ϕ(0) = 1 and limt→∞ ϕ(t) = 0. Furthermore, the construction of ϕk+l,l implies
that

η1(t) =
∫

(0,∞)

ϕk+l,k+l(rt) dG(r)

for t > 0, where ϕk+l,k+l is the Euclid’s hat function (5), and G is nondecreasing
with G(0+) = 0 but not necessarily bounded. The interchange in the order of the
differentiation and integration is justified by the compact support and boundedness
of Wu’s functions. Then if α = 1/2, the arguments on page 96 in [7] show that
η2(t) is convex for t > 0.

Conversely, assume that ϕ satisfies the conditions of Theorem 1.1 with α = 1/2.
Then the function −η′1(t1/2) satisfies the conditions of Lemma 4.3 in [7] with m =
k + l + 1. (Assumption (b) of the lemma holds, because limt→∞ ϕ(t) = 0.) Thus,
η′1 admits a representation of the form

η′1(t) = −
∫

(0,∞)

(
1− rt2

)k+l

+
dH(r)

for t > 0, where H is nondecreasing with H(0+) = 0. Integration with respect to t
shows that η1 is of the form

η1(t) =
∫

(0,∞)

ϕk+l,k+l(rt) dG(r)(9)

for t > 0, where ϕk+l,k+l is the Euclid’s hat function, and G is nondecreasing with
G(0+) = 0. Here and in the following, the integration constant is zero, because
limt→∞ ϕ(t) = 0; and the interchange in the order of the integration is permissible
because the integrand is nonnegative. In view of Eqs. (3) and (7), we conclude
from a k-fold application of the operator I to both sides of the equality (9) that
ϕ is of the form (8) for some nondecreasing function F with F (0+) = 0. Finally,
F can be identified with a probability measure on (0,∞), because ϕ(0) = 1 and
limt→∞ ϕ(t) = 0.

The proof of Theorem 1.1 is now straightforward. If α = 1/2 and n = 2l+ 1 the
theorem holds by the proposition, because ϕk+l,l is an element of Φ2l+1, and the
class is closed under scale mixtures. If ϕ satisfies the conditions of the theorem for
some α > 1/2 it does so for α = 1/2 too, by Proposition 4.5 of [7]. Finally, the
assertion of the theorem holds for n = 1, . . . , 2l+ 1, because it holds for n = 2l+ 1
and the classes Φn are nonincreasing in n. The proof is complete.

A natural question here is whether the scale mixture representations of Wu’s
functions yield the strongest possible criteria of the Pólya type. A partial answer
is contained in the following proposition, which refers to a similar construction of
Wendland [30]. For nonnegative integers k and l, consider Wendland’s compactly
supported function

ψk+l+1,k(t) = Ik(1− t)k+l+1
+ (t ≥ 0),(10)

which belongs to the class Φ2l+1, and whose even continuation to the real line is 2k
times differentiable at zero. Proposition 2.2 shows that Theorem 1.1 characterizes
the scale mixtures of Wendland’s functions if α = 1. In view of Proposition 4.5 in
[7], the scale mixtures of Wendland’s function ψk+l+1,k form a subclass of the scale
mixtures of Wu’s function ϕk+l,l, and the resulting criterion is weaker.
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Table 1. Upper bounds for Kuttner’s function k1(λ).

λ 3/2 5/3 1.7908 1.8085 1.8976 1.9138 1.9345 1.9480 1.9550

upper bound 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000

Proposition 2.2. If α = 1, Theorem 1.1 gives necessary and sufficient conditions
for a function ϕ : [0,∞)→ R to be of the form

ϕ(t) =
∫

(0,∞)

ψk+l+1,k(rt) dF (r) (t ≥ 0),

where ψk+l+1,k ∈ Φ2l+1 is Wendland’s function (10), and F is a probability measure
on (0,∞).

We omit the proof of Proposition 2.2, because it is entirely analogous to that
of Proposition 2.1. Both results show, in particular, that Theorem 1.1 applies to
radial functions with 2k (or less) continuous derivatives at zero, for any degree
of smoothness k. Examples abound, and applications in spatial statistics will be
discussed elsewhere. Here, we focus on an application to a problem of Kuttner [14]
and Golubov [10].

3. The Kuttner-Golubov problem

In this section we consider the question for which values of λ > 0 and κ > 0 the
truncated power function

ϕλ,κ(t) = (1− tλ)κ+(11)

is an element of the class Φn. The problem can be formulated equivalently in terms
of summability and positivity for Fourier series and Bessel integrals, and we refer
to Kuttner [14], Golubov [10], Misiewicz and Richards [20], Berens and Xu [3], and
Zastavnyi [35, 36] for these relations. The univariate case, n = 1, has an interesting
history and dates back to the works of Wintner [32] and Kuttner [14] (see [9] for
a more detailed discussion). It is easily seen that ϕλ,κ is not an element of Φ1 if
λ ≥ 2, regardless of the value of κ. Kuttner then showed that there exists a function
k1(λ), λ ∈ (0, 2), such that ϕλ,κ is an element of Φ1 if and only if κ ≥ k1(λ). The
function k1(λ) is continuous and strictly increasing, limλ→0 k1(λ) > 0, k1(1) = 1,
limλ→2 k1(λ) =∞, and k1(λ) > λ if λ 6= 1.

Let us now apply Theorem 1.1 for α = 1/2 and l = 0 to find upper bounds on
Kuttner’s function k1(λ). These are summarized in Table 1. The estimates for λ =
5/3, λ = 1.7908, and λ = 1.8085 result from an application of the criterion for k = 1
and have been discussed in the previous paper [7]. Generally, computer algebra
systems allow for straightforward checks of the convexity of η2 or the nonnegativity
of η′′2 , respectively. In fact, an application of Theorem 1.1 to the truncated power
function (11) amounts to a check whether a polynomial is nonnegative on the unit
interval. The calculations for the estimates in Table 1 have been performed with
Maple [11]. The fifth and sixth estimates are based on Theorem 1.1 with k = 2,
and for the last three estimates, the criterion with k = 3 was used. The estimate
for λ = 3/2 is based on a different approach. In this specific case, the nonnegativity
of the Bessel integral (2) can be proved directly.

Proposition 3.1. For Kuttner’s function, k1(3/2) ≤ 2.
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Proof. We need to show that ϕ(t) = (1− t3/2)2
+ belongs to the class Φ1. From (2),

this is true if and only if

ϕ̂(s) =
∫ 1

0

(
1− t3/2

)2
cos(ts) dt

=
3
2
s−4

(
(2πs3)1/2 C

(
(2s/π)1/2

)
− 4 (cos s+ s sin s− 1)

)
≥ 0

for s > 0, where

C(s) =
∫ s

0

cos
(π

2
u2
)
du(12)

is a Fresnel integral. Substituting π
2 s

2 for s, we get the equivalent condition that

h0(s) =
π2

4
s3 C(s)− 2 cos

(π
2
s2
)
− πs2 sin

(π
2
s2
)

+ 2 ≥ 0

for s > 0. A straightforward albeit tedious calculation shows that h0(s) > 0 if
s ≥
√

2. Let us now define

h1(s) =
4
3

(πs)−2h′0(s) = C(s)− s cos
(π

2
s2
)

so that

h′1(s) = π s2 cos
(π

2
s2
)
.

Then h1(0) = 0 and h′1(s) ≥ 0 for s ∈ (0,
√

2). Therefore, h1(s) and h′0(s) are
nonnegative for s ∈ (0,

√
2). Since h0(0) = 0, we conclude that h0(s) ≥ 0 if

s ∈ (0,
√

2), and the proof is complete.

Let us now turn to the multivariate case. The question whether the truncated
power function ϕλ,κ belongs to the classes Φn, n = 1, 2, . . . , has been addressed by
Golubov [10]. He showed that for all n = 1, 2, . . . , there exists a function kn(λ),
λ ∈ (0, 2), such that ϕλ,κ is an element of Φn if and only if κ ≥ kn(λ). The function
kn(λ) is continuous and nondecreasing in λ, limλ→0 kn(λ) > 0, limλ→2 kn(λ) =∞,
and kn(λ) ≥ (n − 1)/2 + λ with equality if λ = 1. It is also clear that kn(λ) is
nondecreasing in n. However, finite upper bounds on kn(λ) have not been available
for n > 1 and λ > 1. Table 2 provides upper bounds for n = 3 and λ > 1. The
first estimate, k3(3/2) ≤ 3, is given in Proposition 3.2. It is based on a direct
proof of the nonnegativity of the Bessel integral (2). The second and third, the
following three, and the last two estimates in the table, respectively, result from
an application of Theorem 1.1 with α = 1/2; l = 1; and k = 1, k = 2, and k = 3;
respectively. Again, the computer algebra system Maple has been used to check
the nonnegativity of η′′2 . Similar estimates for larger values of n can be obtained
from an application of the criterion for larger values of l.

Proposition 3.2. For the Kuttner-Golubov function, k3(3/2) ≤ 3.

Proof. We need to show that ϕ(t) = (1− t3/2)3
+ is an element of Φ3. From (2), this

is true if and only if

ϕ̂(s) =
∫ 1

0

(
1− t3/2

)3
t sin(ts) dt ≥ 0
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Table 2. Upper bounds for the Kuttner-Golubov function k3(λ).

λ 3/2 1.6995 1.7630 1.8095 1.8802 1.8952 1.9235 1.9367

upper bound 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000

for s > 0. Arguments in analogy to those in the proof of Proposition 3.1 show that
ϕ̂(s) is nonnegative if and only if

h0(s) = 1155 S(s) + 5π3s6 C(s) + 128πs3

+
(
13π2s4 − 1155

)
s sin

(π
2
s2
)

+ 257π s3 cos
(π

2
s2
)
≥ 0

for s > 0, where S and C are Fresnel integrals defined by

S(s) =
∫ s

0

sin
(π

2
u2
)
du

and (12), respectively. Straightforward but tedious estimates show that h0(s) > 0
if s ≥

√
2. Then consider

h1(s) =
(
6πs2

)−1
h′0(s) = 64 + 5π2s3 C(s)

+
(
3π2s4 − 64

)
cos
(π

2
s2
)
− 32π s2 sin

(π
2
s2
)
,

h2(s) =
(
3π2s2

)−1
h′1(s) = 5C(s)− 5s cos

(π
2
s2
)
− πs3 sin

(π
2
s2
)
,

h3(s) =
(
πs2
)−1

h′2(s) = 2 sin
(π

2
s2
)
− πs2 cos

(π
2
s2
)
,

h4(s) = h′3(s) = π2s3 sin
(π

2
s2
)
.

Note that hi(0) = 0 for i = 0, 1, 2, 3, and h4(s) = h′3(s) ≥ 0 for s ∈ (0,
√

2).
Proceeding inductively, we see that hi(s) ≥ 0 for i = 3, 2, 1, 0 and s ∈ (0,

√
2). The

proof is complete.

4. ‖ · ‖α-dependent positive definite functions

This final section is concerned with positive definite functions f(x) = ϕ(‖x‖α),
x ∈ Rn, which depend on the lα-(quasi-)norm ‖x‖α = (|x1|α + · · · + |xn|α)1/α,
α > 0, or on the maximum norm, ‖x‖∞ = max(|x1|, . . . , |xn|). We denote by

Φn(α), n = 1, 2, . . . , α > 0,

the class of the continuous functions ϕ : [0,∞)→ R which are such that ϕ(0) = 1
and f(x) = ϕ(‖x‖α), x ∈ Rn, is positive definite. Thus, Φ1(α) = Φ1, independently
of α, and Φn(2) is the class Φn defined in Section 1. For recent reviews of ‖ · ‖α-
dependent positive definite functions and connections to the isometric theory of
Banach spaces, we refer to Koldobsky [13], Misiewicz [19], and Gneiting [5].

Zastavnyi [35, 36] investigated for which values of λ > 0 and κ > 0 the truncated
power function ϕλ,κ(t) = (1 − tλ)κ+ is an element of the class Φn(α). He showed
that for all n ≥ 1 and α > 0 there exists a nondecreasing but not necessarily finite
function kn,α(λ), λ ∈ (0, 2), such that ϕλ,κ is an element of Φn(α) if and only
if κ ≥ kn,α(λ). Clearly k1,α(λ) is Kuttner’s function k1(λ), independently of α,
and kn,2(λ) is the Kuttner-Golubov function kn(λ). If we fix λ = 1, then kn,α(1)
is the Richards-Askey function which the author introduced in [5]. Zastavnyi [35]
established an interesting connection to Schoenberg’s [28] classical question whether
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ϕ(t) = exp(−tλ) is an element of Φn(α). Specifically, he showed that if λ ∈ (0, 2),
then kn,α(λ) is finite if and only if ϕ(t) = exp(−tλ) belongs to the class Φn(α).
Thus, Koldobskǐı’s [12] and Zastavnyi’s [34] solution to the Schoenberg problem
implies that kn,α(λ) is finite if (i) n = 1, α ∈ (0,∞], λ ∈ (0, 2); (ii) n ≥ 2,
α ∈ (0, 2), λ ∈ (0, α]; (iii) n ≥ 2, α = 2, λ ∈ (0, 2); and (iv) n = 2, α ∈ (2,∞],
λ ∈ (0, 1]; and infinite otherwise. Numerical values of kn,α(λ) are known in special
cases only: kn,2(1) = (n + 1)/2 (Golubov [10]); k2,2(1/2) = 1 (Pasenchenko [23]);
kn,1(1) = 2n − 1 (Berens and Xu [3]); and k2,∞(1) = 3. Furthermore, various
estimates are known. Golubov [10] showed that kn,2(λ) ≥ (n − 1)/2 + λ, and
Zastavnyi’s [35] Corollary 3 implies that k2,α(1) ≤ 3 if and only if α ≥ 1. The
following result shows that kn,α(λ) grows at least logarithmically, and at most
linearly, with n. The crucial upper estimate is due to Zastavnyi [35].

Theorem 4.1. If 0 < λ ≤ α < 2, then

− ln(2n)
ln(1 − 2−λ/max(α,1))

≤ kn,α(λ) ≤ kn,α(α) ≤ n
(
k1(α) + 1

)
− 1.(13)

Proof. To prove the lower bound, apply Lemma 3.7 of [5] to the function ϕ(t) =
(1− tλ)κ+. The second inequality is immediate because kn,α(λ) is nondecreasing in
λ, and the upper estimate is given in Corollary 4 of Zastavnyi [35].

In view of the upper inequality in (13), the bounds on Kuttner’s function in
Table 1 provide finite upper estimates for the general function kn,α(λ), for all n,
and for a very wide range of α and λ. Clearly, upper estimates for larger values
of α will result from an application of Theorem 1.1 for l = 0 and larger values of
k. It is also interesting to observe that the upper estimate in (13) is attained if
α = 1. After acceptance of this paper, Professor Victor P. Zastavnyi kindly pointed
to the relevance of the results in Liflyand et al. [17]. Details and an associated lower
bound on kn,α(α) will be discussed elsewhere.

The most attractive feature of the problem is certainly the close connection to
analogues of Pólya’s criterion. Specifically, if ϕλ,κ(t) = (1 − tλ)κ+ is an element of
the class Φn(α), then so are its scale mixtures of the form

ϕ(t) =
∫

(0,∞)

(
1− rtλ

)κ
+
dF (r) (t ≥ 0)(14)

where F is a probability measure on (0,∞). For κ a nonnegative integer Proposition
3.5 of Gneiting [5] (see also Williamson [31] and Lévy [16]) characterizes the scale
mixtures concisely. A continuous function ϕ : [0,∞) → R with ϕ(0) = 1 and
limt→∞ ϕ(t) = 0 is of the form (14) if and only if(

− d

dt

)κ−1

ϕ(t1/λ)

is convex for t > 0. Thus, any finite upper bound on kn,α(λ) will immediately
provide a criterion of the Pólya type.

Let us assume in the following that ϕ : [0,∞) → R is a continuous function
with ϕ(0) = 1 and limt→∞ ϕ(t) = 0. Since k2n−1,2(1) = n, we conclude that
ϕ ∈ Φ2n−1(2) if (−1)n−1ϕ(n−1)(t) is convex for t > 0. This is the beautiful Askey’s
criterion [1], which reduces to Pólya’s theorem if n = 1. Richards [25] called
for α-analogues of Askey’s criterion and, indeed, these have been found. Since
kn,1(1) = 2n − 1, we see that ϕ ∈ Φn(1) if ϕ(2n−2)(t) is convex for t > 0. This
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result again reduces to Pólya’s theorem if n = 1. It was established independently
by Berens and Xu [3] and Gneiting [5]. Finally, the criteria of Zastavnyi [35, 36] and
Gneiting [8] stem from the facts that k2,α(1) ≤ 3 if α ∈ [1,∞], and k2,2(1/2) = 1,
respectively. Clearly, our findings in Section 3 provide very many new results of
this type. For example, we conclude from Proposition 3.1 that ϕ belongs to the
class Φ1 if −t−1/3ϕ′(t2/3) is convex for t > 0. In particular, the univariate function
f(x) = ϕ(|x|) is positive definite if

3tϕ′′(t)− 2t2ϕ′′′(t)− 2ϕ′(t) ≥ 0

for t > 0. Similarly, Proposition 3.2, our estimates in the tables, and Theorem 4.1
lead to further analogues of Pólya’s criterion, which we leave to the reader.

As our final remark, a criterion of this type allows for functions f(x) = ϕ(‖x‖α)
which are differentiable of order at most one at zero. A natural question is whether
there are α-analogues of Pólya’s theorem that apply to functions which are smoother
at the origin. If α = 2, Theorem 1.1 provides this kind of criterion. If α 6= 2, the
answer is in the negative. Proposition 4.1.3 of Misiewicz and Scheffer [21] and the
remarks thereafter imply that an ‖ · ‖α-dependent positive definite function on Rn
has at most one continuous derivative at the origin, unless n = 1 or α = 2.
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